
Package: Tinflex (via r-universe)
September 8, 2024

Type Package

Title A Universal Non-Uniform Random Number Generator

Version 2.4

Date 2023-03-21

Author Josef Leydold, Carsten Botts and Wolfgang H\"ormann

Maintainer Josef Leydold <josef.leydold@wu.ac.at>

Imports graphics, methods, stats

Suggests Runuran

Description A universal non-uniform random number generator for quite
arbitrary distributions with piecewise twice differentiable
densities.

License GPL (>= 2)

NeedsCompilation yes

Date/Publication 2023-03-21 20:50:05 UTC

Repository https://jleydold.r-universe.dev

RemoteUrl https://github.com/cran/Tinflex

RemoteRef HEAD

RemoteSha e02d070edc59890d8f75701359bc2f5ad69470fb

Contents
Tinflex-package . 2
plot.Tinflex . 4
print.Tinflex . 5
Tinflex.sample . 6
Tinflex.setup . 7

Index 12

1

2 Tinflex-package

Tinflex-package Tinflex – Universal non-uniform random number generator

Description

Tinflex is a universal non-uniform random number generator based on the acceptence-rejection
method for all distributions that have a piecewise twice differentiable density function. Required
input includes the log-density function of the target distribution and its first and second derivatives.

Details

Package: Tinflex
Type: Package
Version: 2.4
Date: 2023-03-21
License: GPL 2 or later

Package Tinflex serves three purposes:

1. The installed package provides a fast routine for sampling from any distribution that has a
piecewise twice differentiable density function.

2. It provides C routines functions that could be used in other packages (see the installed C
header files).

3. The R source (including comments) presents all details of the general sampling method which
are not entirely worked out in our paper cited in the see references below.

Algorithm Tinflex is a universal random variate generator based on transformed density rejection
which is a variant of the acceptance-rejection method. The generator first computes and stores hat
and squeeze functions and then uses these functions to generate variates from the distribution of
interest. Since the setup procedure is separated from the generation procedure, many samples can
be drawn from the same distribution without rerunning the (expensive) setup.

The algorithm requires the following data about the distribution (for further details see Tinflex.setup):

• the log-density of the targent distribution;

• its first derivative;

• its second derivative (optionally);

• a starting partition of its domain such that each subinterval contains at most one inflection
point of the transformed density;

• a transformation for the density (default is the logarithm transformation).

The following routines are provided.

Tinflex.setup computes hat and squeeze. The table is then stored in a generator object of class
"Tinflex".

Tinflex-package 3

Tinflex.sample draws a random sample from a particular generator object.

print.Tinflex prints the properties a generator object of class "Tinflex".

plot.Tinflex plots density, hat and squeeze functions for a given generator object of class "Tinflex".

For further details see Tinflex.setup.

There are variants of the method. The first one uses the second derivative to determine regions whre
the transformed density is convex, concave, or has a single inflection points. The second variant
estimates the signs on the second derivative by means of the first derivative. Thus it is easier to use
at the expense of a more complex algorithm.

There are two different implementation: Routine Tinflex.setup is implemented mainly in R and
serves (together with Tinflex:::Tinflex.sample.R) as a reference implementation of the pub-
lished algorithm. Nevertheless, the sampling routine Tinflex.sample runs quite fast.

Routine Tinflex.setup.C on the other hand is implemented entirely in C. So it also allows to link
to the underlying C code from other packages.

Warning

It is very important to note that the user is responsible for the correctness of the supplied arguments.
Since the algorithm works (in theory) for all distributions with piecewise twice differentiable density
functions, it is not possible to detect improper arguments. It is thus recommended that the user
inspect the generator object visually by means of the plot method (see plot.Tinflex for details).

Note

Routine Tinflex.sample is implemented both as pure R code (routine Tinflex.sample.R) for
documenting the algorithm as well as C code for fast performance.

Author(s)

Josef Leydold <josef.leydold@wu.ac.at>, Carsten Botts and Wolfgang Hörmann.

References

C. Botts, W. Hörmann, and J. Leydold (2013), Transformed Density Rejection with Inflection
Points, Statistics and Computing 23(2), 251–260, doi:10.1007/s1122201193064. See also Research
Report Series / Department of Statistics and Mathematics Nr. 110, Department of Statistics and
Mathematics, WU Vienna University of Economics and Business, https://epub.wu.ac.at/id/
eprint/3158.

W. Hörmann, and J. Leydold (2022), A Generalized Transformed Density Rejection Algorithm, in:
Advances in Modeling and Simulation, Ch. 14, doi:10.1007/9783031101939_14, accepted for pub-
lication.. See also Research Report Series / Department of Statistics and Mathematics Nr. 135, De-
partment of Statistics and Mathematics, WU Vienna University of Economics and Business, https:
//research.wu.ac.at/de/publications/a-generalized-transformed-density-rejection-algorithm.

See Also

See Tinflex.setup for further details.

Package Runuran provides a set of many other automatic non-uniform sampling algorithms.

https://doi.org/10.1007/s11222-011-9306-4
https://epub.wu.ac.at/id/eprint/3158
https://epub.wu.ac.at/id/eprint/3158
https://doi.org/10.1007/978-3-031-10193-9_14
https://research.wu.ac.at/de/publications/a-generalized-transformed-density-rejection-algorithm
https://research.wu.ac.at/de/publications/a-generalized-transformed-density-rejection-algorithm

4 plot.Tinflex

Examples

Bimodal density
f(x) = exp(-|x|^alpha + s*|x|^beta + eps*|x|^2)
with alpha > beta >= 2 and s, eps > 0

alpha <- 4.2
beta <- 2.1
s <- 1
eps <- 0.1

Log-density and its derivatives.
lpdf <- function(x) { -abs(x)^alpha + s*abs(x)^beta + eps*abs(x)^2 }
dlpdf <- function(x) { (sign(x) * (-alpha*abs(x)^(alpha-1)

+ s*beta*abs(x)^(beta-1) + 2*eps*abs(x))) }
d2lpdf <- function(x) { (-alpha*(alpha-1)*abs(x)^(alpha-2)

+ s*beta*(beta-1)*abs(x)^(beta-2) + 2*eps) }

Parameter cT=0 (default):
There are two inflection points on either side of 0.
ib <- c(-Inf, 0, Inf)

Create generator object.
gen <- Tinflex.setup.C(lpdf, dlpdf, d2lpdf, ib=c(-Inf,0,Inf), rho=1.1)

Print data about generator object.
print(gen)

Draw a random sample
Tinflex.sample(gen, n=10)

Inspect hat and squeeze visually in original scale
plot(gen, from=-2.5, to=2.5)
... and in transformed (log) scale.
plot(gen, from=-2.5, to=2.5, is.trans=TRUE)

With Version 2.0 the setup also works without providing the
second derivative of the log-density
gen <- Tinflex.setup.C(lpdf, dlpdf, d2lpdf=NULL, ib=c(-Inf,0,Inf), rho=1.1)
Tinflex.sample(gen, n=10)

plot.Tinflex Plot Tinflex Generator Objects

Description

Plotting methods for generator objects of classes "Tinflex" and "TinflexC". The plot shows the
(transformed) density, hat and squeeze.

print.Tinflex 5

Usage

S3 method for class 'Tinflex'
plot(x, from, to, is.trans=FALSE, n=501, ...)
S3 method for class 'TinflexC'
plot(x, from, to, is.trans=FALSE, n=501, ...)

Arguments

x an object of class "Tinflex" or "TinflexC".
from, to the range over which the function will be plotted. (numeric)

is.trans if TRUE then the transformed density and its hat and squeezes are plotted. (logi-
cal)

n the number of x values at which (transformed) PDF to evaluate. (integer)

... arguments to be passed to methods, such as graphical parameters (see par). In
particular the following argument may be useful:

ylim limit for the plot range: see plot.window. It has sensible defaults if omit-
ted.

Details

This is the print method for objects of class "Tinflex" or "TinflexC". It plots the given density
function (blue) in the domain (from,to) as well as hat function (red) and squeeze (green) of the
acceptance-rejection algorithm. If is.trans is set to TRUE, then density function, hat and squeeze
are plotted on the transformed scale. Notice that the latter only gives a sensible picture if parameter
cT is the same for all intervals.

Author(s)

Josef Leydold <josef.leydold@wu.ac.at>, Carsten Botts and Wolfgang Hörmann.

See Also

plot, plot.function. See Tinflex.setup for examples.

print.Tinflex Print Tinflex Generator Objects

Description

Print methods for generator objects of class "Tinflex" or "TinflexC".

Usage

S3 method for class 'Tinflex'
print(x, debug=FALSE, ...)
S3 method for class 'TinflexC'
print(x, debug=FALSE, ...)

6 Tinflex.sample

Arguments

x an object of class "Tinflex" or "TinflexC".

debug enable/disable the display of detailed information about the object. (logical)

... additional arguments to print.

Details

These are the print methods for objects of classes "Tinflex" and "TinflexC".

Author(s)

Josef Leydold <josef.leydold@wu.ac.at>, Carsten Botts and Wolfgang Hörmann.

See Also

print. Tinflex.setup. Tinflex.setup.C. See Tinflex.setup for examples.

Tinflex.sample Draw Random Sample from Tinflex Generator Object

Description

Draw a random sample from a generator object of class "Tinflex" or "TinflexC".

Usage

Tinflex.sample(gen, n=1)
Tinflex.sample.C(gen, n=1)

Arguments

gen an object of class "Tinflex" or "TinflexC".

n sample size. (integer)

Details

Routine Tinflex.sample.C allows objects of class "TinflexC" only and thus is a bit faster than
the same call with routine Tinflex.sample.

Author(s)

Josef Leydold <josef.leydold@wu.ac.at>, Carsten Botts and Wolfgang Hörmann.

See Also

See Tinflex.setup for examples.

Tinflex.setup 7

Tinflex.setup Create Tinflex Generator Objects

Description

Create a generator object of class "Tinflex" or "TinflexC".

Usage

Tinflex.setup(lpdf, dlpdf, d2lpdf=NULL, ib, cT=0, rho=1.1, max.intervals=1001)
Tinflex.setup.C(lpdf, dlpdf, d2lpdf=NULL, ib, cT=0, rho=1.1, max.intervals=1001)

Arguments

lpdf log-density of targent distribution. (function)

dlpdf first derivative of log-density. (function)

d2lpdf second derivative of log-density. (function, optional)

ib break points for partition of domain of log-density. (numeric vector of length
greater than 1)

cT parameter for transformation Tc. (numeric vector of length 1 or of length length(ib)-1)

rho performance parameter: requested upper bound for ratio of area below hat to
area below squeeze. (numeric)

max.intervals maximal numbers of intervals. (numeric)

Details

Algorithm Tinflex is a flexible algorithm that works (in theory) for all distributions that have a
piecewise twice differentiable density function. The algorithm is based on the transformed density
rejection algorithm which is a variant of the acceptance-rejection algorithm where the density of the
targent distribution is transformed by means of some transformation Tc. Hat and squeeze functions
of the density are then constructed by means of tangents and secants.

The algorithm uses family Tc of transformations, where

Tc(x) =

{
log(x) for c = 0 ,
sign(c) xc for c ̸= 0 .

Parameter c is given by argument cT.

The algorithm requires the following input from the user:

• the log-density of the targent distribution, lpdf;

• its first derivative dlpdf;

• its second derivative d2lpdf (optionally);

• a starting partition ib of the domain of the target distribution such that each subinterval con-
tains at most one inflection point of the transformed density;

8 Tinflex.setup

• the parameter(s) cT of the transformation either for the entire domain or alternatively for each
of the subintervals of the partition.

The starting partition of the domain of the target distribution into non-overlapping intervals has to
satisfy the following conditions:

• The partition points must be given in ascending order (otherwise they are sorted anyway).

• The first and last entry of this vector are the boundary points of the domain of the distribution.
In the case when the domain of the distribution is unbounded, the respective points are -Inf
and Inf.

• Within each interval of the partition, the transformed density possesses at most one inflection
point (including all finite boundary points).

• If a boundary point is infinite, or the density vanishes at the boundary point, then the trans-
formed density must be concave near the corresponding boundary point and in the correspond-
ing tail, respectively.

• If the log-density lpdf has a pole or cusp at some point x, then this must be added to the
starting partition point. Moreover, it has to be counted as inflection point. Moreover, in the
corresponding intervals the transformed density must be convex.

Argument d2lpdf is optional. If d2lpdf=NULL, then a variant of the method is used, that determines
intervals where the transformed density is concave or convex without means of the second derivative
of the log-density.

Parameter cT is either a single numeric, that is, the same transformation Tc is used for all subin-
tervals of the domain, or it can be set independently for each of these intervals. In the latter case
length(cT) must be equal to the number of intervals, that is, equal to length(ib)-1. For the
choice of cT the following should be taken into consideration:

• cT=0 (the default) is most robust against numeric underflow or overflow.

• cT=-0.5 has the fastest marginal generation time.

• One should always use cT=0 or cT=-0.5 for intervals that contain a point where the derivative
of the (log-) density vanishes (e.g., an extremum). For other values of cT, the algorithm is less
accurate.

• For unbounded intervals (− inf, a] or [a, inf), one has to select cT such that 0 ≥ cT > −1.

• For an interval that contains a pole at one of its boundary points (i.e., there the density is
unbounded), one has to select cT such that cT < −1 and the transformed density is convex.

• If the transformed density is concave in some interval for a particular value of cT, then it is
concave for all smaller values of cT.

Parameter rho is a performance parameter. It defines an upper bound for ratio of the area below
the hat function to the area below the squeeze function. This parameter is an upper bound of
the rejection constant. More importantly, it provides an approximation to the number of (time
consuming) evalutions of the log-density function lpdf. For rho=1.01, the log-density function is
evaluated once for a sample of 300 random points. However, values of rho close to 1 also increase
the table size and thus make the setup more expensive.

Parameter max.intervals defines the maximal number of subintervals and thus the maximal table
size. Putting an upper bound on the table size prevents the algorithm from accidentally exhausting
all of the computer memory due to invalid input. It is very unlikely that one has to increase the
default value.

Tinflex.setup 9

Value

Routine Tinflex.setup returns an object of class "Tinflex" that stores the random variate gener-
ator (density, hat and squeeze functions, cumulated areas below hat). For details see sources of the
algorithm or execute print(gen,debug=TRUE) with an object gen of class "Tinflex".

Routine Tinflex.setup.C is equivalent to Tinflex.setup but does all computations entirely in
C. It returns an object of class "TinflexC" which is equivalent to class "Tinflex" but stores all
data in an C structure instead of an R list.

Warning

It is very important to note that the user is responsible for the correctness of the supplied arguments.
Since the algorithm works (in theory) for all distributions with piecewise twice differentiable density
functions, it is not possible to detect improper arguments. It is thus recommended that the user
inspect the generator object visually by means of the plot method (see plot.Tinflex for details).

Author(s)

Josef Leydold <josef.leydold@wu.ac.at>, Carsten Botts and Wolfgang Hörmann.

References

C. Botts, W. Hörmann, and J. Leydold (2013), Transformed Density Rejection with Inflection
Points, Statistics and Computing 23(2), 251–260, doi:10.1007/s1122201193064. See also Research
Report Series / Department of Statistics and Mathematics Nr. 110, Department of Statistics and
Mathematics, WU Vienna University of Economics and Business, https://epub.wu.ac.at/id/
eprint/3158.

W. Hörmann, and J. Leydold (2022), A Generalized Transformed Density Rejection Algorithm, in:
Advances in Modeling and Simulation, Ch. 14, doi:10.1007/9783031101939_14, accepted for pub-
lication.. See also Research Report Series / Department of Statistics and Mathematics Nr. 135, De-
partment of Statistics and Mathematics, WU Vienna University of Economics and Business, https:
//research.wu.ac.at/de/publications/a-generalized-transformed-density-rejection-algorithm.

See Also

See Tinflex.sample for drawing random samples, plot.Tinflex and print.Tinflex for print-
ing and plotting objects of class "Tinflex".

Examples

Example 1: Bimodal density
Density f(x) = exp(-|x|^alpha + s*|x|^beta + eps*|x|^2)
with alpha > beta >= 2 and s, eps > 0

alpha <- 4.2
beta <- 2.1
s <- 1
eps <- 0.1

Log-density and its derivatives.

https://doi.org/10.1007/s11222-011-9306-4
https://epub.wu.ac.at/id/eprint/3158
https://epub.wu.ac.at/id/eprint/3158
https://doi.org/10.1007/978-3-031-10193-9_14
https://research.wu.ac.at/de/publications/a-generalized-transformed-density-rejection-algorithm
https://research.wu.ac.at/de/publications/a-generalized-transformed-density-rejection-algorithm

10 Tinflex.setup

lpdf <- function(x) { -abs(x)^alpha + s*abs(x)^beta + eps*abs(x)^2 }
dlpdf <- function(x) { (sign(x) * (-alpha*abs(x)^(alpha-1)

+ s*beta*abs(x)^(beta-1) + 2*eps*abs(x))) }
d2lpdf <- function(x) { (-alpha*(alpha-1)*abs(x)^(alpha-2)

+ s*beta*(beta-1)*abs(x)^(beta-2) + 2*eps) }

Parameter cT=0 (default):
There are two inflection points on either side of 0.
ib <- c(-Inf, 0, Inf)

Create generator object.
gen <- Tinflex.setup.C(lpdf, dlpdf, d2lpdf, ib=c(-Inf,0,Inf), rho=1.1)

Print data about generator object.
print(gen)

Draw a random sample
Tinflex.sample(gen, n=10)

Inspect hat and squeeze visually in original scale
plot(gen, from=-2.5, to=2.5)
... and in transformed (log) scale.
plot(gen, from=-2.5, to=2.5, is.trans=TRUE)

With Version 2.0 the setup also works without providing the
second derivative of the log-density
gen <- Tinflex.setup.C(lpdf, dlpdf, d2lpdf=NULL, ib=c(-Inf,0,Inf), rho=1.1)
Tinflex.sample(gen, n=10)

Example 2: Exponential Power Distribution
Density f(x) = exp(-|x|^alpha)
with alpha > 0 [>= 0.015 due to limitations of FPA]

alpha <- 0.5

Log-density and its derivatives.
lpdf <- function(x) { -abs(x)^alpha }
dlpdf <- function(x) { if (x==0) {0} else {-sign(x) * alpha*abs(x)^(alpha-1)}}
d2lpdf <- function(x) { -alpha*(alpha-1)*abs(x)^(alpha-2) }

Parameter cT=-0.5:
There are two inflection points on either side of 0 and
a cusp at 0. Thus we need a partition point that separates
the inflection points from the cusp.
ib <- c(-Inf, -(1-alpha)/2, 0, (1-alpha)/2, Inf)

Create generator object with c = -0.5.
gen <- Tinflex.setup.C(lpdf, dlpdf, d2lpdf, ib=ib, cT=-0.5, rho=1.1)

Print data about generator object.
print(gen)

Tinflex.setup 11

Draw a random sample.
Tinflex.sample(gen, n=10)

Inspect hat and squeeze visually in original scale
plot(gen, from=-4, to=4)
... and in transformed (log) scale.
plot(gen, from=-4, to=4, is.trans=TRUE)

With Version 2.0 the setup also works without providing the
second derivative of the log-density
gen <- Tinflex.setup.C(lpdf, dlpdf, d2lpdf=NULL, ib=ib, cT=-0.5, rho=1.1)
Tinflex.sample(gen, n=10)

Example 3: Generalized Inverse Gaussian Distribution
Density f(x) = x^(lambda-1) * exp(-omega/2 * (x+1/x)) x>= 0
with 0 < lambda < 1 and 0 < omega <= 0.5

la <- 0.4 ## lambda
om <- 1.e-7 ## omega

Log-density and its derivatives.
lpdf <- function(x) { ifelse (x==0., -Inf, ((la - 1) * log(x) - om/2*(x+1/x))) }
dlpdf <- function(x) { if (x==0) { Inf} else {(om + 2*(la-1)*x-om*x^2)/(2*x^2)} }
d2lpdf <- function(x) { if (x==0) {-Inf} else {-(om - x + la*x)/x^3} }

Parameter cT=0 near 0 and cT=-0.5 at tail:
ib <- c(0, (3/2*om/(1-la) + 2/9*(1-la)/om), Inf)
cT <- c(0,-0.5)

Create generator object.
gen <- Tinflex.setup.C(lpdf, dlpdf, d2lpdf, ib=ib, cT=cT, rho=1.1)

Print data about generator object.
print(gen)

Draw a random sample.
Tinflex.sample(gen, n=10)

Inspect hat and squeeze visually in original scale
plot(gen, from=0, to=5)

With Version 2.0 the setup also works without providing the
second derivative of the log-density
gen <- Tinflex.setup.C(lpdf, dlpdf, d2lpdf=NULL, ib=ib, cT=cT, rho=1.1)
Tinflex.sample(gen, n=10)

Index

∗ datagen
plot.Tinflex, 4
print.Tinflex, 5
Tinflex-package, 2
Tinflex.sample, 6
Tinflex.setup, 7

∗ distribution
plot.Tinflex, 4
print.Tinflex, 5
Tinflex-package, 2
Tinflex.sample, 6
Tinflex.setup, 7

∗ package
Tinflex-package, 2

par, 5
plot, 5
plot.function, 5
plot.Tinflex, 3, 4, 9
plot.TinflexC (plot.Tinflex), 4
plot.window, 5
print, 5, 6
print.Tinflex, 3, 5, 9
print.TinflexC (print.Tinflex), 5

Runuran, 3

Tinflex (Tinflex-package), 2
Tinflex-package, 2
Tinflex.sample, 3, 6, 9
Tinflex.setup, 2, 3, 5, 6, 7
Tinflex.setup.C, 3, 6

12

	Tinflex-package
	plot.Tinflex
	print.Tinflex
	Tinflex.sample
	Tinflex.setup
	Index

